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ABSTRACT

Feedforward models for novel view synthesis (NVS) have recently advanced by
transformer-based methods like LVSM, using attention among all input and tar-
get views. In this work, we argue that its full self-attention design is suboptimal,
suffering from quadratic complexity with respect to the number of input views
and rigid parameter sharing among heterogeneous tokens. We propose Efficient-
LVSM, a dual-stream architecture that avoids these issues with a decoupled co-
refinement mechanism. It applies intra-view self-attention for input views and
self-then-cross attention for target views, eliminating unnecessary computation.
Efficient-LVSM achieves 30.6 dB PSNR on RealEstate10K with 2 input views,
surpassing LVSM by 0.9 dB, with 2x faster training convergence and 4.4x faster
inference speed. Efficient-LVSM achieves state-of-the-art performance on multi-
ple benchmarks, exhibits strong zero-shot generalization to unseen view counts,
and enables incremental inference with KV-cache, thanks to its decoupled designs.

1 INTRODUCTION

Reconstructing 3D scenes from a collection of 2D images remains a cornerstone challenge in com-
puter vision. The field has witnessed a remarkable evolution, moving from classical photogramme-
try systems to per-scene optimized neural representations like NeRF (Mildenhall et al.l [2020) and
3DGS (Kerbl et al., 2023), which achieve high-quality reconstruction, but require dense inputs and
costly optimization for each new scene. A significant advance came from Large Reconstruction
Models (LRMs) (Hong et al.||2024; |Wei et al., 2024;|Zhang et al.| |2024), which learn generalizable
3D priors from vast datasets. A recent paradigm shift, pioneered by models like LVSM (Jin et al.,
2025)), has further advanced the field by minimizing hand-crafted inductive biases, where it directly
synthesizes novel views from posed images. It eliminates the need for predefined 3D structures or
rendering equations and achieves surprisingly good rendering quality with flexibility.

Despite the success, its monolithic self-attention mechanism, where all input and target tokens are
concatenated into a single sequence, leads to two primary drawbacks: (1) Low efficiency: full self-
attention leads to quadratic complexity with regard to the number of input views. Furthermore, when
generating multiple target views with the same input views, input representation can not be re-used.
(2) Limited performance: full self-attention enforces parameter sharing for heterogeneous tokens
- content-rich input views and pose-only target queries. It hinders the model’s ability to to learn
specialized representations for their distinct tasks, i.e., understanding the semantics & 3D structure
of the scene for input tokens and rendering the novel view for target tokens.

In this work, we systematically analyze these trade-offs and derive Efficient-LVSM, a Transformer-
based architecture designed to resolve these limitations. The key insight is to decouple the process
of input view encoding from target view generation. To achieve this, Efficient-LVSM is composed
of two specialized pathways: an Input Encoder that independently processes input views, and a
Target Decoder that synthesizes novel views by querying the encoded input features at each layer.
This dual-stream architecture endows our model with four key properties:

* Specialized Attention Pathways. Our architecture utilizes distinct modules for input and target
tokens. In the input encoder, only input view is processed. In the target decoder, target tokens act
as queries and input tokens serve as keys and values in cross-attention, avoiding the use of shared
parameters for heterogeneous information.
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Figure 1: Latent Novel View Synthesis Paradigms Comparison. The proposed decoupled archi-
tecture disentangles the input and target streams. It maintains the integrity and specialization with
high efficiency, obtaining better rendering quality and faster inference speed.

* Robustness to Variable View Counts. The input self-attention processes each view separately,
making the transformation of one view independent of others. This per-view processing strategy
allows the model to generalize better than LVSM to a variable number of input views at test time.

¢ Computational and Memory Efficiency. The input encoder processes each input view sepa-
rately and the target decoder adopts cross-attention, both reducing the computational complexity
with respect to the number of input views from quadratic O(N?)) to linear O(N;,).

* Incremental Inference via KV-Cache. The decoupled structure enables KV-cache of input view
features. When a new input view is provided, only that view needs to be processed. When a new
target view is required, the KV-cache could be directly re-used. In summary, the cost of adding
new input views and target views is nearly constant and thus enables incremental inference.

We conduct comprehensive evaluations for Efficient-LVSM. It sets a new state-of-the-art, outper-
forming LVSM by 0.9dB PSNR and GS-LRM by 2.5dB PSNR on the RealEstate 10K benchmark
with 50% training time and achieves 2 —4 times speed acceleration in terms of both training iteration
and inference. It exhibits strong zero-shot generalization to unseen numbers of input views.

2 METHOD
In this section, we present a step-by-step analysis that derives the design of Efficient-LVSM.
2.1 PRELIMINARY

Task Definition: Given IV input images with known camera poses and M target view camera poses,
novel view synthesis (NVS) aims to render M corresponding target images. Specifically, the input
is {(I;,E;,K;)[i = 1,2,..., N} and {(E;, K;)|i = 1,2,..., M}, where I € R¥*Wx3 ig the input
RGB image, H and W are the height and width, E, K € R*** are camera extrinsic and intrinsic.
The output is rendered target images, denoted as {ii|z' =1,2, .., M,i € RHXWX3}

Feedforward NVS Framework we adopt LVSM (Jin et al.| 2025) end-to-end paradigm. For
the input {(I;, E;, K;)}¥ | and {(E;, K;)}},, all camera poses are encoded using Pliicker ray
embedding (Plucker] 1865) while input images are patchified as in ViT (Dosovitskiy et al., [2020).
We obtain the input tokens {S;}% ; by concatenating its RGB patches and Pliicker ray patches in
the hidden dimension and passing through an MLP. We obtain the target tokens {7} }2, by feeding
its Pliicker ray patches into another MLP.

Next, input and target tokens pass through a set of transformer blocks to extract features, which
is the key component of the framework {RM, = ({S:} N, {T;}}1,) where ® represents the
transformer blocks and { R; }}£, is the final features of target views.

The output layer transforms the final features of target views {R;}, into RGB value by a linear
layer followed by a sigmoid function. These RGB patches are then unpatchified to target images:

1! = unpatchify(Sigmoid(Linearender (R )) € R V>3, (1)
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Figure 2: Efficient-LVSM Model Structure. Efficient-LVSM patchifies posed input images and

target Pliicker into tokens. Tokens of each input view separately pass through an encoder to extract
contextual information. Target tokens cross-attend to input tokens and render new views.

2.2 ANALYSIS OF LVSM’Ss FULL SELF-ATTENTION PARADIGM

LVSM deocder-only model employs full self-attention on all input and target tokens, which intro-
duces the following two limitations:

Entangled Representation. From the content perspective, input tokens contain both semantic and
geometric information, while target tokens only have geometric information. From the system per-
spective, they bear distinct tasks: input tokens are to understand the semantics & 3D structure of
the scene and target tokens are to render the novel view. However, shared self-attention parameters
do not distinguish the difference, hampering the generalization ability, as evidenced experiments in
Table 2] and visualizations in Fig.[T0]

Computation and Memory Costs. Consider a sample (.S;, T;) with the shapes of Np,, x d and
Mp,, x d, where N and M are the numbers of input and target views, and p,, = HW/p? is the
number of patches. LVSM decoder-only model constructs M separate sequences for M target views,
where each sequence is a concatenation of the entire set of input tokens and the tokens of a single
target view. These sequences are processed by full self-attention:

Vi = concat(S%, S5, ..., SN, T}); Vi = VI + Self-Attnly, (V1) 2)

The shape of V; is M x (Np,, + p,) x d. LVSM repeats the computation of one target view for M
times. Thus, the temporal complexity of LVSM decoder-only model is M - O(N?p2) = O(N?M),
as shown in Fig. 3] (a) and Table[I] The quadratic complexity with regard to the number of input
views hampers the efficiency and the repetition of tokens introduces severe computational cost.

LVSM encoder-decoder structure avoids the repetition issue by using an encoder to compress all
input views into one latent vector first. However, this design introduces loss of information, signif-
icantly limiting the reconstruction quality, which is acknowledged in LVSM paper |Jin et al.| (2025)).

Structure Overall Complexity =~ Component Complexity .
LVSM O + 30 Encoder oON?) 'gable 1: Comparl.son of Mode}
Encoder-Decoder Decoder O(M) tructure CompleXIty- The pro
LVSM posed Efficient-LVSM obtains lower
Decoder-Only O(M(N +1)%) Decoder  O(M(N +1)%) complexity than LVSM and thus
Efficient-LVSM O(NM + ) FeeiEs O(N) ?lchieves. significant speed up, as ev-
(Ours) Decoder O(NM) idenced in Sec.[3.4]

2.3 DUAL-STREAM PARADIGM

Based on the observation above, we propose a dual-stream structure, where distinct modules are
applied on input and target tokens to decouple the information flow, as in Fig.[2}

Input Encoder: To maintain the independency of different input views and improve efficiency, we
limit the scope of self-attention to patches within the same input view. Each input view is processed
separately, which enables efficient inference when a new input view is provided (incremental in-
ference). Instead of constructing a single, prohibitively long attention sequence containing tokens
from all N input views, we propose to process N shorter sequences. Specifically, let S; represent the

tokens of the i input view. They are updated by an intra-view self-attention block at layer I:

St = 8;7" + Self-Attnyu (S;); St = St + FENjpu(S7) 3)
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Figure 3: Comparison of Attention Paradigms. The shaded areas indicate the token pairs for
which attention scores are computed. EfficientLVSM adopts intra-view self-attention for inputs and
allows the target decoder to cross-attend to the full set of uncompressed input features.
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Figure 4: Vanilla Encoder-Decoder vs. Dual-Stream Co-refinement. (a) Hidden features in
middle layers in vanilla encoder-decoder are wasted while the dual-stream co-refinement structure
utilizes these features to extract more information. (b) Feature maps indicate that co-refinement
structure catches more details of the target view.

Target Decoder: To allow efficient KV-cache for features of input views, target decoder employs
cross-attention, letting output tokens 7} attend to input tokens S from the last layer of encoder:

Til = Til + CrOSS'Attnfarget (Til7 S%, SQLa seey S]L\/f)v Til - Til + FFNilnpul (T’Ll) (4)

This design decouples the parameters for input and output tokens and allows rendering multiple
target views with the same input KV-cache. Assuming the hidden dimension and the number of
patches per image are constants, the temporal complexity of the Target Decoder are O (N M), while
complexity of LVSM decoder-only is O(M (N + 1)?), as in Table

2.4 INTRA-VIEW ATTENTION OF TARGET TOKENS IN DECODER

The aforementioned cross-attention only decoder design introduces a drawback: each target token
has to store the information of the whole scene by their own since there is no scene-level interac-
tion in input encoder, limiting the capacity. To this end, we propose to add intra-view self-attention
in target decoder alternatively with the original cross attention :

T! =T, + Self-Attnfyee (T} )
T! = T} + Cross-Attn{ye (T}, ST, S5, ..., SN) )
In this way, the intra-view self-attention in decoder allows to integrate scene-level information from

other target tokens while still maintaining KV-cache ability. Experiments Table[3] (a) demonstrates
6+6 layers self-then-cross attention performs better than 12 layers cross-attention.

2.5 CO-REFINEMENT OF ENCODER-DECODER

One widely observed phenomenon for deep neural network is that different layers of features
represent different abstract level of informantion (Zeiler & Fergus| 2013)): early layers captur-
ing fine-grained details such as textures, and later layers encoding high-level semantics. In vanilla
encoder-decoder, only last layer features are used, as in Fig.[d](a), which limits its capacity.

To this end, we propose a dual-stream co-refinement structure, illustrated in Fig. E| (b), where each
layer of the encoder provides information to its corresponding layer in the decoder. At layer [, input

tokens S’ are first updated by self-attention, and then the target decoder queries these updated tokens
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Figure 5: Applying REPA into Efficient-LVSM. (a) Pretrained vision encoders and MLP projectors
are discarded in inference. (b) Feature maps indicate that REPA helps the model extract semantics.

to refine its own representation 77:
T =T/ 7" + Self-Attnfye (T} )
T} = T} + Cross-Attn{ye (T}, S1, S5, ..., Sk (6)
T! = T} + FENL,u (T})
By querying the encoder’s representations in the middle layers, the decoder can synthesize its own
features using both the fine-grained details from early layers and the rich semantic context from later

ones. Fig.[](b) demonstrates that the co-refinement model generate more detailed and high-quality
features compared to vanilla encoder-decoder structure.

2.6 DISTILLATION WITH REPA

With the decoupled attention for different views, a natural thought is to utilize those powerful pre-
trained vision encoder. To utilize visual features without sacrificing inference speed, we employ
REPA (Yu et al [2025) to distill visual features from DINOv3 (Siméoni et al., [2025). Formally,

consider a clean image I and hy(X*) is the projection of hidden features of layer k, where hg is
a trainable projector and X* represents the input tokens or target tokens of layer k: X* = S* or
X% =1TF. Let f represent the pretrained encoder such as DINOv3. The goal is to align the projec-
tion of layer output hs(X*) with encoded images f(I) by maximizing the patch-wise similarities:

1 . 2
LrEPA = ; sim(f(I), he(X7)) ©)
We find that improvement with REPA is conditional. Experiment in Table [5|show that LVSM ben-
efits much less compared to Efficient LVSM’s dual-stream co-refinement design structure, possibly
due to its full self-attention design entangles feature maps of different views.

2.7 KV-CACHE & INCREMENTAL INFERENCE

A key advantage of the decoupled dual stream design is its natural compatibility with KV caching

during inference as illustrated in Fig. EI The key and values of all input views, {S5;}~,, can be
computed once and stored. When a new target view is required, the decoder could directly utilize

the stored cache {S’i}fvzl for rendering. When a new input view I is introduced, only this new
view needs to be processed and appended into the cache. As a result, it enables efficient incremental
inference, which could be used in interactive application scenarios.

3 EXPERIMENTS

3.1 DATASETS

Scene-level Datasets. We use the widely used RealEstate10K dataset (Zhou et al,[2018)). It contains
80K video clips curated from 10K YouTube videos, including both indoor and outdoor scenes. We
follow the training/testing split applied in LVSM 2025).
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Figure 6: Efficient Incremental Inference with KV-Cache. Efficient LVSM saves computation
when provided with novel inputs or targets by caching the key and value for previous input views.

Table 2: Scene-level View Synthesis Table 3: Object-level View Synthesis Quality. We test at
Quality. We test on the same valida- 512 and 256 resolution on both input and rendering. “Enc”
tion set proposed in pixelSplat. means encoder and “Dec” means decoder.

RealEstate10k (Zhou et al.|2018) ‘ ABO (Collins et al.||2022} GSO (Downs et al.|[2022}

PSNR 1 SSIM T LPIPS T PSNR 1+ SSIMT LPIPS | | PSNR 1 SSIMT  LPIPS |
- Triplane-LRM (Res-512) | 27.50  0.896  0.093 | 2654  0.893  0.064
p'xeglfgg ggﬁ g'ggg gggg GS-LRM (Res-512) | 29.09 0925 0085 | 3052 0952  0.050
: : - LVSM Enc-Dec (Res-512)  29.81 0913 0.065 | 2932 0933  0.052
Duetal.| 2478 0.820 0.213 LVSM Dec-Only (Res-512) 3210 0938  0.045 | 3236 0962  0.028
pixelSplat| 26.09  0.863 0.136 Ours (Res-512)  32.65  0.951 0.042 3292 0973  0.021
GMSVng/} %g?g 8'283 8'}%3 LGM (Res-256) | 2079 0813  0.158 | 2144 0832  0.122
- : - : GS-LRM (Res-256) | 2898 0926 0074 | 2959 0944 0051
LVSM Enc-Dec | 28.58  0.893 0.114 LVSM Enc-Dec (Res-256) 3035 0923 0052 | 29.19 0932  0.046
LVSM Dec-Only | 29.67  0.906 0.098 LVSM Dec-Only (Res-256) 3247 0944  0.037 31.71 0957  0.027
Ours| 3061 0915 0.087 Ours (Res256) ~ 3313 0960 0035 | 3273 0969  0.022

Object-level Dataset. We use the Objaverse dataset (Deitke et al.,2023) to train our model. Follow-
ing the rendering settings in GS-LRM (Zhang et al., 2024])), we render 730K objects, and each object
contains 32 random views. We test our object-level model on Google Scanned Objects (Downs
et al., 2022) (GSO) and Amazon Berkeley Objects (Collins et al., 2022) (ABO), containing 1099
and 1000 objects respectively. Following Instant-3D (L1 et al., [2023)) and LVSM (Jin et al.| [2025)),
we render 4 structured input views and 10 random target views for testing.

3.2

Model Details. Following LVSM (Jin et al., [2025), we use a patch size of 8 x 8 for the image
tokenizer with 24 transformer layers (12-layer encoder and 12-layer decoder) and the dimension of
hidden feature 1024. Following REPA (Yu et al., [2025)), we select a 3-layer MLP as the alignment
projection layer.

IMPLEMENTAION DETAILS

Protocols. Following the settings in LVSM, we select 4 input views and 8 target views in the object-
level dataset. We select 2 input views and 3 target views in scene-level dataset.

3.3 COMPARISON WITH START-OF-THE-ART MODELS

Scene-Level Comparison. We compare on scene-level inputs with pixelNeRF (Yu et al.| [2021),
GPNR (Suhail et al.l 2022)), Du et al. (Du et al.| [2023), pixelSplat (Charatan et al., 2024}, MVS-
plat (Chen et al.| [2024), GS-LRM (Zhang et al., 2024), LVSM encoder-decoderand LVSM decoder-
only (Jin et all [2025). As in Table our model establishes a new state-of-the-art on the
RealEstate 10K benchmark, outperforming the previous leading method, LVSM decoder-only, by
a significant margin of 0.9 dB PSNR. This corresponds to an 18.7% reduction in Mean Squared
Error (MSE), indicating a substantial improvement in reconstruction fidelity. This quantitative leap
is supported by our qualitative results in Figure[/| where our model produces noticeably sharper ren-
derings and demonstrates superior geometric accuracy, particularly when synthesizing near-field ob-
jects where LVSM often introduces artifacts. Notably, this state-of-the-art performance is achieved
with remarkable efficiency. Our model was trained for just 3 days on 64 A100 GPUs, which is half
the training time required by LVSM. In essence, Efficient-LVSM not only surpasses the previous
state-of-the-art in quality but does so while requiring only 50% of the training budget.
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RealEstate 10K (Zhou et all, 2018)) and Amazon Berkeley Objects (Collins et al., [2022). Images
rendered by our model have less blur details.
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Figure 8: Inference Speed Comparison. We compare the inference time (ms) against (a) the num-
ber of target views and (b) the number of input views. Our model achieves consistently low latency.
The performance of the LVSM baselines, particularly LVSM Decoder-Only, degrades severely as
view counts increase. This highlights our model’s significant computational efficiency, achieving up
to a 14.9x speedup over LVSM Decoder-Only.

Object-Level Comparison. Similarly, Efficient-LVSM achieves state-of-the-art performance.
3.4 EFFICIENCY ANALYSIS

We evaluate the efficiency from three perspectives: vanilla inference latency, incremental inference
latency, and training convergence speed. For fair comparison, we keep the number of layers (12+12)
and hidden dimension (1024) the same with LVSM. For the convergence analysis, smaller variants
are used for fast verification to save computational resource.

Vanilla Inference Speed. We analyze the inference cost by measuring latency, memory peak, and
total GFLOPS as a function of both input and target view counts. As shown in Fig. [8] our model’s
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and memory consumption due to its KV-cache ability. higher PNSR in the end.

Figure 9: Efficiency Comparison.

Table 5: Ablation Study.

(a) Architectural Components Ablation. (b) Effect of REPA
Arch. ‘ PSNR T SSIM T LPIPS i Arch./Variant \ PSNR 1 SSIM 1t LPIPS |
LVSM Dec-Only \ 25.52 0.8385 0.1541

Cross-Attention Only

24.18  0.7908 0.1982 LVSM Dec-Only w REPA 2568 08410  0.1515
Self-Cross Attention

2497 0.8201 0.1628

Ours w/o REPA 26.02 0.8483 0.1481
Co-Refinement 26.25 0.8462 0.1490 Ours w REPA 26.81 0.8628 0.1296
(c) Effect of Model Sizes (d) Size and Speed Comparison

Models ‘ Parameters ‘ PSNR1 SSIM1 LPIPS | Model Layers Parameters Latency (ms) | GFLOPS | PSNR 1
GS-LRM 24 307M 88.24 5047  28.10
Enc(12) + Dec(12) 195M 2832 08892 0.1106 LVSMEnc-Dec  6+18  177M 70.88 6042  28.58
Enc(6) + Dec(6) 101M 2777 08871 0.1149 LVSMDec-Only 24 177M 10937 8523 2967
Enc(3) + Dec(3) 53M | 2643 08609  0.1377 Ours (inference) 12+12  199M 2478 1325 30.61

resource consumption exhibits a slow growth, maintaining high efficiency even with many views. In
contrast, while the LVSM Encoder-Decoder shows a moderate increase in cost, the LVSM Decoder-
Only variant suffers from a severe computational growth. This efficiency gap is substantial: with 16
input views, our model is 14.9x faster and consumes 50% less memory than LVSM Decoder-Only.

Incremental Inference. Fig.[9d]indicate that the time and memory required for the incremental
coming input views is nearly constant for Efficient-LVSM. Conversely, both LVSM baselines exhibit
a clear growth in latency and memory consumption.

Training Convergence Speed. As in Fig. 9] (b), Efficient-LVSM demonstrates a steeper learning

curve. It successfully reaches Table 4: Ablation Study of REPA Distillation.
the final performance plateau of

the LVSM baseline while con-  Category Configuration PSNR1 LPIPS| SSIM 1

suming only half the computa- ~ Without REPA Distillation (Baseline) 2602  0.1481  0.8483
tional budget (GPU hours). Ablation on REPA Hyperparameters

A Smooth L1 2681  0.1349  0.8562

3.5 ABLATION STUDIES Loss Function L2 2639  0.1366  0.8571

. . Cosi 2630  0.1374  0.8542

All ablation experiments use IosmeT e 635 01367 0856

_ nput Tokens Only b b b

a smaller 6+6 encoder-decoder 1y, oy ion Target Target Tokens Only 2627  0.1452  0.8536

configuration to save budget. Both Input & Target 2660  0.1256  0.8642

Co-refinement of Encoder- Ly 2o Lisly

D d Structure As in DINOv3 Source Layer Layer 10 26.28 0.1441 0.8540

ccoder ucture. Layer 12 26.11  0.1416  0.8503

Table [5] (a), self-then-cross
attention yields 0.79 dB PSNR improvement compared to cross-attention only in decoder. Further,
adopting encoder-decoder co-refinement gives 1.28 dB PSNR gains.

Applicability of REPA Distillation. As in Table [5|(b), applying REPA to Efficient-LVSM brings a
substantial gain of 0.8 dB while applying to LSVM only brings 0.16 dB improvement. In Table 4]
we study the configuration of REPA. We find that Smooth L1 loss works the best, possibly due to its
absolute approximation to DINOv3 features instead of relative approximation as cosine similarity.
We confirm that distillation for both input and target are useful. DINOv3’s middle layer features
instead of the final layers are most helpful, aligning with findings in|Siméoni et al.| (2025)).
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Influcne of Model Size. As in Table[5](c), increasing model size consistently improves reconstruc-
tion quality, aligning with Jin et al.| (2025), demonstrating the potential of feedforward models.

Size and Speed Comparison. As in Table [3] (d), Efficient LVSM achieves 4x faster inference
with 0.94 dB higher PSNR compared to state-of- -~
the-art LVSM decoder-only model. e

30
3.6 ZERO-SHOT GENERALIZATION ;5
TO THE NUMBER OF INPUT VIEWS. 2 8 o
) ) & % --0urs
As in Fig. Efficient-LVSM and LVSM both -+-LVSM Decoder-only
2

could benefit from more views even not trained
under such data, thanks to the set operator -
Transformer. Efficient LVSM constantly outper-
forms LVSM under all view settings while the gap Figure 10: Zero-Shot Generalization to Input
is gradually reduced, since the reconstruction be- View Count. We train with 4 input views and
comes easier with more input views. test on varying number of views.
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Figure 11: PCA Visualization of Input and Target Views Features at Different Layers.

4  VISUALIZATION

In Fig.[TT] we visualize the features of Efficient-LVSM trained on RealEstate10K. We could observe
that from the initial layer (Layer 1) to the middle layer (Layer 6), the features contain more and
more semantics. From the middle layer (Layer 6) to the last layer (Layer 12), the features becomes
similar to the final output - RGB images. The evolving process demonstrates the effectiveness of the
proposed co-refinement structure to extract features from all levels.

5 CONCLUSION

In this work, we present a systematic analysis for issues of existing Transformer based NVS feedfor-
ward model. Based on the analysis, we derive Efficient-LVSM, a decoupled dual-stream architec-
ture. Comprehensive experiments demonstrate that the proposed structure not only performs better
but also achieves significant speed up for training convergence and inference latency.
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applications.
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A USE OF LARGE LANGUAGE MODELS (LLMS) STATEMENT

During the preparation of this manuscript, we utilized Large Language Models (LLMs), as a writing
assistance tool. The use of LLMs was limited to improving the grammar, clarity, and readability
of the text. This includes tasks such as rephrasing sentences for better flow, correcting spelling
and grammatical errors, and ensuring stylistic consistency. The core scientific ideas, experimental
design, results, and conclusions presented in this paper are entirely our own. LLMs were not used to
generate any of the primary scientific content or interpre- tations. The final version of the manuscript
was thoroughly reviewed and edited by all authors, who take full responsibility for its content and
originality.

B RELATED WORKS

Generalizable Novel View Synthesis. The ability to synthesize novel views from a sparse set of
images is a long-standing goal in computer vision. Pioneering approaches such as image-based
rendering (IBR) blend reference images based on proxy geometries (Debevec et al., 1996} (Gortler
et al.,[1996). Early deep learning based methods predict blending weights or depth maps (Hedman
et al., |2018; (Cho1 et al.l [2019). Generalizable neural radiance fields models like PixelNeRF (Yu
et al.,[2021) and MVSNeRF (Chen et al.|[2024) pioneered the use of 3D-specific inductive biases.

Transformer-based Large Reconstruction Models. Recently, the field has gravitated towards
leveraging the scalability and power of the Transformer architecture (Vaswani et al., 2017)) to create
Large Reconstruction Models (LRMs)(Hong et al.|[2024; Wei et al., 2024; |Li et al.,|2023}; |Gao et al.}
2024; You et al.l [2025). These models are trained on vast datasets to learn generic 3D priors. For
instance, Triplane-LRM(Li et al.,|2023)) and GS-LRM (Zhang et al.,|2024) learn to map sparse input
images to explicit 3D representations like triplane NeRFs or 3D Gaussian Splatting primitives.

View Synthesis without Explicit 3D Representations. A compelling line of research explores the
possibility of performing novel view synthesis in a purely “geometry-free” manner. Early attempts
such as Scene Representation Transformers (SRT) (Sajjadi et al.||2022), introduced the idea of using
a Transformer to learn a latent scene representation. Large View Synthesis Model (LVSM) (Jin et al.}
2025)) employs a single, monolithic Transformer to process all input and target tokens.

C TRAINING AND IMPLEMENTATION DETAILS

Training Setup. We train Efficient-LVSM with a constant learning rate schedule with a warmup of
2500 iterations. Following LVSM (Jin et al.}|2025)), we use AdamW optimizer and the 3; and 3, are
0.9 and 0.95 respectively. We also employ a weight decay of 0.5 on all parameters of the LayerNorm
layers. Unless noted, our models have 12 encoder layers and 12 decoder layers, which is the same
as LVSM.

Dataset-Specific Schedules. For object-level dataset, we use 4 input views and 8 target views with
64 A100 80G GPU. We first train with the resolution of 256 for 3 days. Then we finetune the model
with the resolution of 512 for 2 days with a learning rate of 4e — 5. For the scene-level dataset, we
train with 2 input views and 3 target views. We first train with the resolution of 256 with 2 days and
then finetune it with the resolution of 512 for 1 day.
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REPA Distillation Details. We use the DINOv3-ViT-B/16 model (Siméoni et al., [2025) as the
pre-trained teacher. We use the output features from the 8th transformer layer of DINOv3 as the
distillation target. These teacher features are aligned with the output of a specific layer in our
student model, which varies by its size: for our main 12+12 layer models, we align with the 3rd
layer’s output, while for the smaller 6+6 layer models used in ablations, we align with the 2nd
layer. The alignment is performed via a 3-layer MLP projector and optimized using the Smooth L1
loss (Girshickl, [2015)).
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