
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EFFICIENT-LVSM: FASTER, CHEAPER, AND BETTER
LARGE VIEW SYNTHESIS MODEL VIA DECOUPLED
CO-REFINEMENT ATTENTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Feedforward models for novel view synthesis (NVS) have recently advanced by
transformer-based methods like LVSM, using attention among all input and tar-
get views. In this work, we argue that its full self-attention design is suboptimal,
suffering from quadratic complexity with respect to the number of input views
and rigid parameter sharing among heterogeneous tokens. We propose Efficient-
LVSM, a dual-stream architecture that avoids these issues with a decoupled co-
refinement mechanism. It applies intra-view self-attention for input views and
self-then-cross attention for target views, eliminating unnecessary computation.
Efficient-LVSM achieves 30.6 dB PSNR on RealEstate10K with 2 input views,
surpassing LVSM by 0.9 dB, with 2× faster training convergence and 4.4× faster
inference speed. Efficient-LVSM achieves state-of-the-art performance on multi-
ple benchmarks, exhibits strong zero-shot generalization to unseen view counts,
and enables incremental inference with KV-cache, thanks to its decoupled designs.

1 INTRODUCTION

Reconstructing 3D scenes from a collection of 2D images remains a cornerstone challenge in com-
puter vision. The field has witnessed a remarkable evolution, moving from classical photogramme-
try systems to per-scene optimized neural representations like NeRF (Mildenhall et al., 2020) and
3DGS (Kerbl et al., 2023), which achieve high-quality reconstruction, but require dense inputs and
costly optimization for each new scene. A significant advance came from Large Reconstruction
Models (LRMs) (Hong et al., 2024; Wei et al., 2024; Zhang et al., 2024), which learn generalizable
3D priors from vast datasets. A recent paradigm shift, pioneered by models like LVSM (Jin et al.,
2025), has further advanced the field by minimizing hand-crafted inductive biases, where it directly
synthesizes novel views from posed images. It eliminates the need for predefined 3D structures or
rendering equations and achieves surprisingly good rendering quality with flexibility.

Despite the success, its monolithic self-attention mechanism, where all input and target tokens are
concatenated into a single sequence, leads to two primary drawbacks: (1) Low efficiency: full self-
attention leads to quadratic complexity with regard to the number of input views. Furthermore, when
generating multiple target views with the same input views, input representation can not be re-used.
(2) Limited performance: full self-attention enforces parameter sharing for heterogeneous tokens
- content-rich input views and pose-only target queries. It hinders the model’s ability to to learn
specialized representations for their distinct tasks, i.e., understanding the semantics & 3D structure
of the scene for input tokens and rendering the novel view for target tokens.

In this work, we systematically analyze these trade-offs and derive Efficient-LVSM, a Transformer-
based architecture designed to resolve these limitations. The key insight is to decouple the process
of input view encoding from target view generation. To achieve this, Efficient-LVSM is composed
of two specialized pathways: an Input Encoder that independently processes input views, and a
Target Decoder that synthesizes novel views by querying the encoded input features at each layer.
This dual-stream architecture endows our model with four key properties:

• Specialized Attention Pathways. Our architecture utilizes distinct modules for input and target
tokens. In the input encoder, only input view is processed. In the target decoder, target tokens act
as queries and input tokens serve as keys and values in cross-attention, avoiding the use of shared
parameters for heterogeneous information.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Input Views

Encoder

Latents

×	𝑁Target Views

Decoder

Duplicate×𝑵
×	𝑁

Decoder

… …

×	𝑁

Duplicate
×𝑵

Input Views

… …

Encoder

Input Views

KV
Decoder

×	𝑁

×	𝑁

Target Views

a) Encoder-Decoder LVSM b) Decoder-only LVSM c) Efficient LVSMTable 1: A comparison of di↵erent paradigms across key attributes.

Attribute
LVSM

Encoder-Decoder
LVSM

Decoder-Only
E�cient-LVSM

(Ours)

Information Integrity 7 3 3
Specialization Pathways 3 7 3

Rendering Quality 7 3 33
E�ciency (Speed/Memory) 3 7 33

Incremental Inference 7 7 3

1

PSNR SSIM Inference Time (ms)

28.58

29.67

30.61

0.893

0.906

0.915
70.88

109.4

24.78

LVSM Encoder-Decoder
LVSM Decoder-Only
Efficient LVSM

Figure 1: Latent Novel View Synthesis Paradigms Comparison. The proposed decoupled archi-
tecture disentangles the input and target streams. It maintains the integrity and specialization with
high efficiency, obtaining better rendering quality and faster inference speed.

• Robustness to Variable View Counts. The input self-attention processes each view separately,
making the transformation of one view independent of others. This per-view processing strategy
allows the model to generalize better than LVSM to a variable number of input views at test time.

• Computational and Memory Efficiency. The input encoder processes each input view sepa-
rately and the target decoder adopts cross-attention, both reducing the computational complexity
with respect to the number of input views from quadratic O(N2

in) to linear O(Nin).
• Incremental Inference via KV-Cache. The decoupled structure enables KV-cache of input view

features. When a new input view is provided, only that view needs to be processed. When a new
target view is required, the KV-cache could be directly re-used. In summary, the cost of adding
new input views and target views is nearly constant and thus enables incremental inference.

We conduct comprehensive evaluations for Efficient-LVSM. It sets a new state-of-the-art, outper-
forming LVSM by 0.9dB PSNR and GS-LRM by 2.5dB PSNR on the RealEstate10K benchmark
with 50% training time and achieves 2−4 times speed acceleration in terms of both training iteration
and inference. It exhibits strong zero-shot generalization to unseen numbers of input views.

2 METHOD

In this section, we present a step-by-step analysis that derives the design of Efficient-LVSM.

2.1 PRELIMINARY

Task Definition: Given N input images with known camera poses and M target view camera poses,
novel view synthesis (NVS) aims to render M corresponding target images. Specifically, the input
is {(Ii,Ei,Ki)|i = 1, 2, ..., N} and {(Ei,Ki)|i = 1, 2, ...,M}, where I ∈ RH×W×3 is the input
RGB image, H and W are the height and width, E,K ∈ R4×4 are camera extrinsic and intrinsic.
The output is rendered target images, denoted as {Îi|i = 1, 2, ...,M, Î ∈ RH×W×3}
Feedforward NVS Framework: we adopt LVSM (Jin et al., 2025) end-to-end paradigm. For
the input {(Ii,Ei,Ki)}Ni=1 and {(Ei,Ki)}Mi=1, all camera poses are encoded using Plücker ray
embedding (Plucker, 1865) while input images are patchified as in ViT (Dosovitskiy et al., 2020).
We obtain the input tokens {Si}Ni=1 by concatenating its RGB patches and Plücker ray patches in
the hidden dimension and passing through an MLP. We obtain the target tokens {Ti}Mi=1 by feeding
its Plücker ray patches into another MLP.

Next, input and target tokens pass through a set of transformer blocks to extract features, which
is the key component of the framework: {Ri}Mi=1 = Φ({Si}Ni=1, {Ti}Mi=1) where Φ represents the
transformer blocks and {Ri}Mi=1 is the final features of target views.

The output layer transforms the final features of target views {Ri}Mi=1 into RGB value by a linear
layer followed by a sigmoid function. These RGB patches are then unpatchified to target images:

Îti = unpatchify(Sigmoid(Linearrender(Ri)) ∈ RH×W×3, (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Self-Attn Self-Attn

Input Views & Plücker Rays

*

Encoder
×N

Self-Attn Self-Attn Self-Attn

Decoder

* *

Q
Cross-Attn

×N

K,V

Linear &
Unpachify

Target View Plücker Rays Synthesized Novel Views
Figure 2: Efficient-LVSM Model Structure. Efficient-LVSM patchifies posed input images and
target Plücker into tokens. Tokens of each input view separately pass through an encoder to extract
contextual information. Target tokens cross-attend to input tokens and render new views.

2.2 ANALYSIS OF LVSM’S FULL SELF-ATTENTION PARADIGM

LVSM deocder-only model employs full self-attention on all input and target tokens, which intro-
duces the following two limitations:

Entangled Representation. From the content perspective, input tokens contain both semantic and
geometric information, while target tokens only have geometric information. From the system per-
spective, they bear distinct tasks: input tokens are to understand the semantics & 3D structure of
the scene and target tokens are to render the novel view. However, shared self-attention parameters
do not distinguish the difference, hampering the generalization ability, as evidenced experiments in
Table 2 and visualizations in Fig. 10.

Computation and Memory Costs. Consider a sample (Si, Ti) with the shapes of Npn × d and
Mpn × d, where N and M are the numbers of input and target views, and pn = HW/p2 is the
number of patches. LVSM decoder-only model constructs M separate sequences for M target views,
where each sequence is a concatenation of the entire set of input tokens and the tokens of a single
target view. These sequences are processed by full self-attention:

V l
i = concat(Sl

1, S
l
2, ..., S

l
N , T l

i); V l
i = V l−1

i + Self-Attnl
full(V

l−1
i) (2)

The shape of Vi is M × (Npn + pn)× d. LVSM repeats the computation of one target view for M
times. Thus, the temporal complexity of LVSM decoder-only model is M ·O(N2p2n) = O(N2M),
as shown in Fig. 3 (a) and Table 1. The quadratic complexity with regard to the number of input
views hampers the efficiency and the repetition of tokens introduces severe computational cost.

LVSM encoder-decoder structure avoids the repetition issue by using an encoder to compress all
input views into one latent vector first. However, this design introduces loss of information, signif-
icantly limiting the reconstruction quality, which is acknowledged in LVSM paper Jin et al. (2025).

Structure Overall Complexity Component Complexity

LVSM
Encoder-Decoder O(N2 +M)

Encoder O(N2)
Decoder O(M)

LVSM
Decoder-Only O(M(N + 1)2) Decoder O(M(N + 1)2)

Efficient-LVSM
(Ours) O(NM +N)

Encoder O(N)
Decoder O(NM)

Table 1: Comparison of Model
Structure Complexity. The pro-
posed Efficient-LVSM obtains lower
complexity than LVSM and thus
achieves significant speed up, as ev-
idenced in Sec. 3.4.

2.3 DUAL-STREAM PARADIGM

Based on the observation above, we propose a dual-stream structure, where distinct modules are
applied on input and target tokens to decouple the information flow, as in Fig. 2.

Input Encoder: To maintain the independency of different input views and improve efficiency, we
limit the scope of self-attention to patches within the same input view. Each input view is processed
separately, which enables efficient inference when a new input view is provided (incremental in-
ference). Instead of constructing a single, prohibitively long attention sequence containing tokens
from all N input views, we propose to process N shorter sequences. Specifically, let Si represent the
tokens of the ith input view. They are updated by an intra-view self-attention block at layer l:

Sl
i = Sl−1

i + Self-Attnl
input(S

l−1
i); Sl

i = Sl
i + FFNl

input(S
l
i) (3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Input 1 Input 2 Target

Input 1

Input 2

Target

DecoderEncoder

Input 1 Input 2 Latents

Input 1

Input 2

Latents

Decoder

Latents Target

Latents

Target

Encoder

Input 1 Input 2

Input 1

Input 2

Decoder

Target

Input 1

Input 2

KV

a) Encoder-Decoder LVSM b) Decoder-only LVSM c) Efficient LVSM

Figure 3: Comparison of Attention Paradigms. The shaded areas indicate the token pairs for
which attention scores are computed. EfficientLVSM adopts intra-view self-attention for inputs and
allows the target decoder to cross-attend to the full set of uncompressed input features.

Figure 4: Vanilla Encoder-Decoder vs. Dual-Stream Co-refinement. (a) Hidden features in
middle layers in vanilla encoder-decoder are wasted while the dual-stream co-refinement structure
utilizes these features to extract more information. (b) Feature maps indicate that co-refinement
structure catches more details of the target view.

Target Decoder: To allow efficient KV-cache for features of input views, target decoder employs
cross-attention, letting output tokens T l

i attend to input tokens SL
i from the last layer of encoder:

T l
i = T l

i + Cross-Attnl
target(T

l
i , S

L
1 , S

L
2 , ..., S

L
N); T l

i = T l
i + FFNl

input(T
l
i) (4)

This design decouples the parameters for input and output tokens and allows rendering multiple
target views with the same input KV-cache. Assuming the hidden dimension and the number of
patches per image are constants, the temporal complexity of the Target Decoder are O(NM), while
complexity of LVSM decoder-only is O(M(N + 1)2), as in Table 1.

2.4 INTRA-VIEW ATTENTION OF TARGET TOKENS IN DECODER

The aforementioned cross-attention only decoder design introduces a drawback: each target token
has to store the information of the whole scene by their own since there is no scene-level interac-
tion in input encoder, limiting the capacity. To this end, we propose to add intra-view self-attention
in target decoder alternatively with the original cross attention :

T l
i = T l−1

i + Self-Attnl
target(T

l−1
i)

T l
i = T l

i + Cross-Attnl
target(T

l
i , S

L
1 , S

L
2 , ..., S

L
N)

T l
i = T l

i + FFNl
input(T

l
i)

(5)

In this way, the intra-view self-attention in decoder allows to integrate scene-level information from
other target tokens while still maintaining KV-cache ability. Experiments Table 5 (a) demonstrates
6+6 layers self-then-cross attention performs better than 12 layers cross-attention.

2.5 CO-REFINEMENT OF ENCODER-DECODER

One widely observed phenomenon for deep neural network is that different layers of features
represent different abstract level of informantion (Zeiler & Fergus, 2013): early layers captur-
ing fine-grained details such as textures, and later layers encoding high-level semantics. In vanilla
encoder-decoder, only last layer features are used, as in Fig. 4 (a), which limits its capacity.

To this end, we propose a dual-stream co-refinement structure, illustrated in Fig. 4 (b), where each
layer of the encoder provides information to its corresponding layer in the decoder. At layer l, input
tokens Sl are first updated by self-attention, and then the target decoder queries these updated tokens

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Input Views &

Plücker Rays

Pretrained

Encoder

Self-Attn

Encoder

…

M
L

P

Self-Cross-Attn
KV

Self-Attn Self-Cross-Attn

Self-Attn Self-Cross-Attn

Self-Attn Self-Cross-Attn

Decoder

…

Target View

Plücker Rays

MLP

Rendered

Target

Target GT

Pretrained

Encoder

Loss

Loss

Loss

Input

View

Target

View

Images
Without

REPA

With

REPA

a) Structure of REPA b) Feature Map Comparison

Figure 5: Applying REPA into Efficient-LVSM. (a) Pretrained vision encoders and MLP projectors
are discarded in inference. (b) Feature maps indicate that REPA helps the model extract semantics.

to refine its own representation T l:

T l
i = T l−1

i + Self-Attnl
target(T

l−1
i)

T l
i = T l

i + Cross-Attnl
target(T

l
i , S

l
1, S

l
2, ..., S

l
N)

T l
i = T l

i + FFNl
input(T

l
i)

(6)

By querying the encoder’s representations in the middle layers, the decoder can synthesize its own
features using both the fine-grained details from early layers and the rich semantic context from later
ones. Fig. 4 (b) demonstrates that the co-refinement model generate more detailed and high-quality
features compared to vanilla encoder-decoder structure.

2.6 DISTILLATION WITH REPA

With the decoupled attention for different views, a natural thought is to utilize those powerful pre-
trained vision encoder. To utilize visual features without sacrificing inference speed, we employ
REPA (Yu et al., 2025) to distill visual features from DINOv3 (Siméoni et al., 2025). Formally,
consider a clean image I and hϕ(X

k) is the projection of hidden features of layer k, where hϕ is
a trainable projector and Xk represents the input tokens or target tokens of layer k: Xk = Sk or
Xk = T k. Let f represent the pretrained encoder such as DINOv3. The goal is to align the projec-
tion of layer output hϕ(X

k) with encoded images f(I) by maximizing the patch-wise similarities:

LREPA =
1

N

N∑
i=1

sim(f(I), hϕ(X
k)) (7)

We find that improvement with REPA is conditional. Experiment in Table 5 show that LVSM ben-
efits much less compared to Efficient LVSM’s dual-stream co-refinement design structure, possibly
due to its full self-attention design entangles feature maps of different views.

2.7 KV-CACHE & INCREMENTAL INFERENCE

A key advantage of the decoupled dual stream design is its natural compatibility with KV caching
during inference as illustrated in Fig. 6. The key and values of all input views, {Ŝi}Ni=1, can be
computed once and stored. When a new target view is required, the decoder could directly utilize
the stored cache {Ŝi}Ni=1 for rendering. When a new input view IN+1 is introduced, only this new
view needs to be processed and appended into the cache. As a result, it enables efficient incremental
inference, which could be used in interactive application scenarios.

3 EXPERIMENTS

3.1 DATASETS

Scene-level Datasets. We use the widely used RealEstate10K dataset (Zhou et al., 2018). It contains
80K video clips curated from 10K YouTube videos, including both indoor and outdoor scenes. We
follow the training/testing split applied in LVSM (Jin et al., 2025).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Input Views

Concatenate &

Re-Encode

Re-build

Latent

× 𝑁Target

Views

Decoder

Duplicate× 𝑵

× 𝑁

Decoder

… …

× 𝑁

Duplicate

× 𝑵

Input Views

…

Encoder

Novel Input

K

V

Decoder

× 𝑁

× 𝑁

Target Views

a) Encoder-Decoder LVSM b) Decoder-only LVSM c) Efficient LVSM

Novel

Input

Novel Input

Target Views

Target View

Latent

Concatenate

Target View Latent Target View Latent

KV Cache

Latent Length：𝐿

Novel Cost： 𝑂 3𝐿2 + 𝑂 4𝑁𝐿2

Latent Length：𝐿 Latent Length：𝐿

Novel Cost：𝑂(16𝑁𝐿2) Novel Cost：𝑶 𝑳𝟐 + 𝑶(𝑵𝑳𝟐)

Figure 6: Efficient Incremental Inference with KV-Cache. Efficient LVSM saves computation
when provided with novel inputs or targets by caching the key and value for previous input views.

Table 2: Scene-level View Synthesis
Quality. We test on the same valida-
tion set proposed in pixelSplat.

RealEstate10k (Zhou et al., 2018)
PSNR ↑ SSIM ↑ LPIPS ↓

pixelNeRF 20.43 0.589 0.550
GPNR 24.11 0.793 0.255

Du et al. 24.78 0.820 0.213
pixelSplat 26.09 0.863 0.136
MVSplat 26.39 0.869 0.128
GS-LRM 28.10 0.892 0.114

LVSM Enc-Dec 28.58 0.893 0.114
LVSM Dec-Only 29.67 0.906 0.098

Ours 30.61 0.915 0.087

Table 3: Object-level View Synthesis Quality. We test at
512 and 256 resolution on both input and rendering. ”Enc”
means encoder and ”Dec” means decoder.

ABO (Collins et al., 2022) GSO (Downs et al., 2022)
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Triplane-LRM (Res-512) 27.50 0.896 0.093 26.54 0.893 0.064
GS-LRM (Res-512) 29.09 0.925 0.085 30.52 0.952 0.050

LVSM Enc-Dec (Res-512) 29.81 0.913 0.065 29.32 0.933 0.052
LVSM Dec-Only (Res-512) 32.10 0.938 0.045 32.36 0.962 0.028

Ours (Res-512) 32.65 0.951 0.042 32.92 0.973 0.021

LGM (Res-256) 20.79 0.813 0.158 21.44 0.832 0.122
GS-LRM (Res-256) 28.98 0.926 0.074 29.59 0.944 0.051

LVSM Enc-Dec (Res-256) 30.35 0.923 0.052 29.19 0.932 0.046
LVSM Dec-Only (Res-256) 32.47 0.944 0.037 31.71 0.957 0.027

Ours (Res-256) 33.13 0.960 0.035 32.73 0.969 0.022

Object-level Dataset. We use the Objaverse dataset (Deitke et al., 2023) to train our model. Follow-
ing the rendering settings in GS-LRM (Zhang et al., 2024), we render 730K objects, and each object
contains 32 random views. We test our object-level model on Google Scanned Objects (Downs
et al., 2022) (GSO) and Amazon Berkeley Objects (Collins et al., 2022) (ABO), containing 1099
and 1000 objects respectively. Following Instant-3D (Li et al., 2023) and LVSM (Jin et al., 2025),
we render 4 structured input views and 10 random target views for testing.

3.2 IMPLEMENTAION DETAILS

Model Details. Following LVSM (Jin et al., 2025), we use a patch size of 8 × 8 for the image
tokenizer with 24 transformer layers (12-layer encoder and 12-layer decoder) and the dimension of
hidden feature 1024. Following REPA (Yu et al., 2025), we select a 3-layer MLP as the alignment
projection layer.

Protocols. Following the settings in LVSM, we select 4 input views and 8 target views in the object-
level dataset. We select 2 input views and 3 target views in scene-level dataset.

3.3 COMPARISON WITH START-OF-THE-ART MODELS

Scene-Level Comparison. We compare on scene-level inputs with pixelNeRF (Yu et al., 2021),
GPNR (Suhail et al., 2022), Du et al. (Du et al., 2023), pixelSplat (Charatan et al., 2024), MVS-
plat (Chen et al., 2024), GS-LRM (Zhang et al., 2024), LVSM encoder-decoderand LVSM decoder-
only (Jin et al., 2025). As in Table 2, our model establishes a new state-of-the-art on the
RealEstate10K benchmark, outperforming the previous leading method, LVSM decoder-only, by
a significant margin of 0.9 dB PSNR. This corresponds to an 18.7% reduction in Mean Squared
Error (MSE), indicating a substantial improvement in reconstruction fidelity. This quantitative leap
is supported by our qualitative results in Figure 7, where our model produces noticeably sharper ren-
derings and demonstrates superior geometric accuracy, particularly when synthesizing near-field ob-
jects where LVSM often introduces artifacts. Notably, this state-of-the-art performance is achieved
with remarkable efficiency. Our model was trained for just 3 days on 64 A100 GPUs, which is half
the training time required by LVSM. In essence, Efficient-LVSM not only surpasses the previous
state-of-the-art in quality but does so while requiring only 50% of the training budget.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Input images

LVSM

Decoder-Only

LVSM

Encoder-Decoder

Ours

Ground

Truth

a) Scene-level evaluation b) Object-level evaluation

Figure 7: NVS Visual Comparison. We compare with LVSM (Jin et al., 2025) in
RealEstate10K (Zhou et al., 2018) and Amazon Berkeley Objects (Collins et al., 2022). Images
rendered by our model have less blur details.

0

5000

10000

15000

20000

0 4 8 12 16

FL
O

PS

Target Views Number

2400

2900

3400

3900

4400

0 4 8 12 16

M
em

or
y(

M
B)

Target Views Number

0

100

200

300

400

500

600

700

0 4 8 12 16

Ti
m

e(
m

s)

Input Views Number

0

5000

10000

15000

20000

25000

30000

0 4 8 12 16

FL
O

PS

Input Views Number

2000

2800

3600

4400

5200

6000

0 4 8 12 16

M
em

or
y(

M
B)

Input Views Number

10

60

110

160

210

0 4 8 12 16

Ti
m

e(
m

s)

Target Views Number

6.1x faster 90% less
50% less

14.9x faster
88% less 33% less

Figure 8: Inference Speed Comparison. We compare the inference time (ms) against (a) the num-
ber of target views and (b) the number of input views. Our model achieves consistently low latency.
The performance of the LVSM baselines, particularly LVSM Decoder-Only, degrades severely as
view counts increase. This highlights our model’s significant computational efficiency, achieving up
to a 14.9x speedup over LVSM Decoder-Only.

Object-Level Comparison. Similarly, Efficient-LVSM achieves state-of-the-art performance.

3.4 EFFICIENCY ANALYSIS

We evaluate the efficiency from three perspectives: vanilla inference latency, incremental inference
latency, and training convergence speed. For fair comparison, we keep the number of layers (12+12)
and hidden dimension (1024) the same with LVSM. For the convergence analysis, smaller variants
are used for fast verification to save computational resource.

Vanilla Inference Speed. We analyze the inference cost by measuring latency, memory peak, and
total GFLOPS as a function of both input and target view counts. As shown in Fig. 8, our model’s

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

M
e

m
o

ry
 (

G
B

)

T
im

e
 (

m
s
)

Input View Number Input View Number

7.1x faster 70% less

(a) Incremental Inference Experiments. We compare the inference
latency and memory consumption when the input view is fed one by
one. We observe that Efficient LVSM achieves near constant latency
and memory consumption due to its KV-cache ability.

GPU Hours (h)

P
S

N
R

2x faster

(b) Convergence Speed Compar-
ison. Efficient LVSM achieves
2X faster convergence and achieves
higher PNSR in the end.

Figure 9: Efficiency Comparison.

Table 5: Ablation Study.
(a) Architectural Components Ablation.

Arch. PSNR ↑ SSIM ↑ LPIPS ↓
Cross-Attention Only 24.18 0.7908 0.1982
Self-Cross Attention 24.97 0.8201 0.1628
Co-Refinement 26.25 0.8462 0.1490

(b) Effect of REPA
Arch./Variant PSNR ↑ SSIM ↑ LPIPS ↓
LVSM Dec-Only 25.52 0.8385 0.1541
LVSM Dec-Only w REPA 25.68 0.8410 0.1515

Ours w/o REPA 26.02 0.8483 0.1481
Ours w REPA 26.81 0.8628 0.1296

(c) Effect of Model Sizes
Models Parameters PSNR ↑ SSIM ↑ LPIPS ↓
Enc(12) + Dec(12) 199M 28.32 0.8892 0.1106
Enc(6) + Dec(6) 101M 27.77 0.8871 0.1149
Enc(3) + Dec(3) 53M 26.43 0.8609 0.1377

(d) Size and Speed Comparison
Model Layers Parameters Latency (ms) ↓ GFLOPS ↓ PSNR ↑
GS-LRM 24 307M 88.24 5047 28.10
LVSM Enc-Dec 6+18 177M 70.88 6042 28.58
LVSM Dec-Only 24 177M 109.37 8523 29.67
Ours (inference) 12+12 199M 24.78 1325 30.61

resource consumption exhibits a slow growth, maintaining high efficiency even with many views. In
contrast, while the LVSM Encoder-Decoder shows a moderate increase in cost, the LVSM Decoder-
Only variant suffers from a severe computational growth. This efficiency gap is substantial: with 16
input views, our model is 14.9x faster and consumes 50% less memory than LVSM Decoder-Only.

Incremental Inference. Fig. 9a indicate that the time and memory required for the incremental
coming input views is nearly constant for Efficient-LVSM. Conversely, both LVSM baselines exhibit
a clear growth in latency and memory consumption.

Training Convergence Speed. As in Fig. 9 (b), Efficient-LVSM demonstrates a steeper learning

Table 4: Ablation Study of REPA Distillation.

Category Configuration PSNR ↑ LPIPS ↓ SSIM ↑
Without REPA Distillation (Baseline) 26.02 0.1481 0.8483

Ablation on REPA Hyperparameters

Loss Function
Smooth L1 26.81 0.1349 0.8562
L2 26.39 0.1366 0.8571
Cosine 26.30 0.1374 0.8542

Distillation Target
Input Tokens Only 26.35 0.1367 0.8569
Target Tokens Only 26.27 0.1452 0.8536
Both Input & Target 26.60 0.1256 0.8642

DINOv3 Source Layer
Layer 8 26.60 0.1256 0.8642
Layer 10 26.28 0.1441 0.8540
Layer 12 26.11 0.1416 0.8503

curve. It successfully reaches
the final performance plateau of
the LVSM baseline while con-
suming only half the computa-
tional budget (GPU hours).

3.5 ABLATION STUDIES

All ablation experiments use
a smaller 6+6 encoder-decoder
configuration to save budget.

Co-refinement of Encoder-
Decoder Structure. As in
Table 5 (a), self-then-cross
attention yields 0.79 dB PSNR improvement compared to cross-attention only in decoder. Further,
adopting encoder-decoder co-refinement gives 1.28 dB PSNR gains.

Applicability of REPA Distillation. As in Table 5 (b), applying REPA to Efficient-LVSM brings a
substantial gain of 0.8 dB while applying to LSVM only brings 0.16 dB improvement. In Table 4,
we study the configuration of REPA. We find that Smooth L1 loss works the best, possibly due to its
absolute approximation to DINOv3 features instead of relative approximation as cosine similarity.
We confirm that distillation for both input and target are useful. DINOv3’s middle layer features
instead of the final layers are most helpful, aligning with findings in Siméoni et al. (2025).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Influcne of Model Size. As in Table 5 (c), increasing model size consistently improves reconstruc-
tion quality, aligning with Jin et al. (2025), demonstrating the potential of feedforward models.

Size and Speed Comparison. As in Table 5 (d), Efficient LVSM achieves 4x faster inference

Figure 10: Zero-Shot Generalization to Input
View Count. We train with 4 input views and
test on varying number of views.

with 0.94 dB higher PSNR compared to state-of-
the-art LVSM decoder-only model.

3.6 ZERO-SHOT GENERALIZATION
TO THE NUMBER OF INPUT VIEWS.

As in Fig. 10, Efficient-LVSM and LVSM both
could benefit from more views even not trained
under such data, thanks to the set operator -
Transformer. Efficient LVSM constantly outper-
forms LVSM under all view settings while the gap
is gradually reduced, since the reconstruction be-
comes easier with more input views.

Edges Semantics
Pixel-level

features

Edges Semantics

SemanticsEdges

Layer 1 Layer 6 Layer 12

In
p

u
t

Im
a

g
e

s
 &

P
lü

c
k
e

r
ra

y
s

T
a

rg
e

t
V

ie
w

P
lü

c
k
e

r
ra

y
s

T
a

rg
e

t
V

ie
w

P
lü

c
k
e

r
ra

y
s

Plücker features

Plücker features

KV KV KV

KV KV KV

Render

Render

Target View

Images

Figure 11: PCA Visualization of Input and Target Views Features at Different Layers.

4 VISUALIZATION

In Fig. 11, we visualize the features of Efficient-LVSM trained on RealEstate10K. We could observe
that from the initial layer (Layer 1) to the middle layer (Layer 6), the features contain more and
more semantics. From the middle layer (Layer 6) to the last layer (Layer 12), the features becomes
similar to the final output - RGB images. The evolving process demonstrates the effectiveness of the
proposed co-refinement structure to extract features from all levels.

5 CONCLUSION

In this work, we present a systematic analysis for issues of existing Transformer based NVS feedfor-
ward model. Based on the analysis, we derive Efficient-LVSM, a decoupled dual-stream architec-
ture. Comprehensive experiments demonstrate that the proposed structure not only performs better
but also achieves significant speed up for training convergence and inference latency.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Ethics Statement. Our research aims to advance the field of computer vision and does not present
immediate, direct negative social impacts. We believe our work has the potential for a positive
impact by improving. The dataset used in this study is publicly available and have been widely
adopted by the community for academic research. All data was handled in accordance with their
specified licenses and terms of use. We did not use any personally identifiable or sensitive private
information. We have focused our evaluation on standard academic benchmarks. We encourage
future research building upon our work to consider the specific ethical implications of their target
applications.

Reproducibility Statement. To ensure the reproducibility of our research, we provide a comprehen-
sive description of our methodology, implementation details, and experimental setup in the paper.
Furthermore, we commit to making our code, pre-trained models, and experiment configurations
publicly available upon publication of this paper.

REFERENCES

David Charatan, Sizhe Lester Li, Andrea Tagliasacchi, and Vincent Sitzmann. pixelsplat: 3d gaus-
sian splats from image pairs for scalable generalizable 3d reconstruction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19457–19467, 2024.

Yuedong Chen, Haofei Xu, Chuanxia Zheng, Bohan Zhuang, Marc Pollefeys, Andreas Geiger, Tat-
Jen Cham, and Jianfei Cai. Mvsplat: Efficient 3d gaussian splatting from sparse multi-view
images, 2024. URL https://arxiv.org/abs/2403.14627.

Inchang Choi, Orazio Gallo, Alejandro Troccoli, Min H Kim, and Jan Kautz. Extreme view synthe-
sis. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7781–
7790, 2019.

Jasmine Collins, Shubham Goel, Kenan Deng, Achleshwar Luthra, Leon Xu, Erhan Gundogdu,
Xi Zhang, Tomas F. Yago Vicente, Thomas Dideriksen, Himanshu Arora, Matthieu Guillaumin,
and Jitendra Malik. Abo: Dataset and benchmarks for real-world 3d object understanding, 2022.
URL https://arxiv.org/abs/2110.06199.

Paul E. Debevec, Camillo Jose Taylor, and Jitendra Malik. Modeling and rendering architecture
from photographs: A hybrid geometry- and image-based approach. Seminal Graphics Papers:
Pushing the Boundaries, Volume 2, 1996. URL https://api.semanticscholar.org/
CorpusID:2609415.

Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig
Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of anno-
tated 3d objects. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 13142–13153, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition
at scale. ArXiv, abs/2010.11929, 2020. URL https://api.semanticscholar.org/
CorpusID:225039882.

Laura Downs, Anthony Francis, Nate Koenig, Brandon Kinman, Ryan Hickman, Krista Reymann,
Thomas B. McHugh, and Vincent Vanhoucke. Google scanned objects: A high-quality dataset of
3d scanned household items, 2022. URL https://arxiv.org/abs/2204.11918.

Yilun Du, Cameron Smith, Ayush Tewari, and Vincent Sitzmann. Learning to render novel views
from wide-baseline stereo pairs, 2023. URL https://arxiv.org/abs/2304.08463.

Will Gao, Dilin Wang, Yuchen Fan, Aljaz Bozic, Tuur Stuyck, Zhengqin Li, Zhao Dong, Rakesh
Ranjan, and Nikolaos Sarafianos. 3d mesh editing using masked lrms. arXiv preprint
arXiv:2412.08641, 2024.

Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on computer vision,
pp. 1440–1448, 2015.

10

https://arxiv.org/abs/2403.14627
https://arxiv.org/abs/2110.06199
https://api.semanticscholar.org/CorpusID:2609415
https://api.semanticscholar.org/CorpusID:2609415
https://api.semanticscholar.org/CorpusID:225039882
https://api.semanticscholar.org/CorpusID:225039882
https://arxiv.org/abs/2204.11918
https://arxiv.org/abs/2304.08463

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen. The lumigraph.
Proceedings of the 23rd annual conference on Computer graphics and interactive techniques,
1996. URL https://api.semanticscholar.org/CorpusID:2036193.

Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis, and Gabriel Bros-
tow. Deep blending for free-viewpoint image-based rendering. ACM Transactions on Graphics
(ToG), 37(6):1–15, 2018.

Yicong Hong, Kai Zhang, Jiuxiang Gu, Sai Bi, Yang Zhou, Difan Liu, Feng Liu, Kalyan Sunkavalli,
Trung Bui, and Hao Tan. Lrm: Large reconstruction model for single image to 3d, 2024. URL
https://arxiv.org/abs/2311.04400.

Haian Jin, Hanwen Jiang, Hao Tan, Kai Zhang, Sai Bi, Tianyuan Zhang, Fujun Luan, Noah
Snavely, and Zexiang Xu. Lvsm: A large view synthesis model with minimal 3d inductive
bias. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=QQBPWtvtcn.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Transactions on Graphics, 42(4), July 2023.
URL https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/.

Jiahao Li, Hao Tan, Kai Zhang, Zexiang Xu, Fujun Luan, Yinghao Xu, Yicong Hong, Kalyan
Sunkavalli, Greg Shakhnarovich, and Sai Bi. Instant3d: Fast text-to-3d with sparse-view genera-
tion and large reconstruction model, 2023. URL https://arxiv.org/abs/2311.06214.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis, 2020. URL
https://arxiv.org/abs/2003.08934.

Julius Plucker. Xvii. on a new geometry of space. Philosophical Transactions of the Royal Society
of London, pp. 725–791, 1865.

Mehdi SM Sajjadi, Henning Meyer, Etienne Pot, Urs Bergmann, Klaus Greff, Noha Radwan, Suhani
Vora, Mario Lučić, Daniel Duckworth, Alexey Dosovitskiy, et al. Scene representation trans-
former: Geometry-free novel view synthesis through set-latent scene representations. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6229–6238,
2022.

Oriane Siméoni, Huy V. Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo Jose,
Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaël Ramamonjisoa, Francisco Massa, Daniel
Haziza, Luca Wehrstedt, Jianyuan Wang, Timothée Darcet, Théo Moutakanni, Leonel Sentana,
Claire Roberts, Andrea Vedaldi, Jamie Tolan, John Brandt, Camille Couprie, Julien Mairal, Hervé
Jégou, Patrick Labatut, and Piotr Bojanowski. DINOv3, 2025. URL https://arxiv.org/
abs/2508.10104.

Mohammed Suhail, Carlos Esteves, Leonid Sigal, and Ameesh Makadia. Generalizable patch-based
neural rendering. In European Conference on Computer Vision, pp. 156–174. Springer, 2022.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017. URL https:
//api.semanticscholar.org/CorpusID:13756489.

Xinyue Wei, Kai Zhang, Sai Bi, Hao Tan, Fujun Luan, Valentin Deschaintre, Kalyan Sunkavalli,
Hao Su, and Zexiang Xu. Meshlrm: Large reconstruction model for high-quality mesh. arXiv
preprint arXiv:2404.12385, 2024.

Junqi You, Chieh Hubert Lin, Weijie Lyu, Zhengbo Zhang, and Ming-Hsuan Yang. Instainpaint:
Instant 3d-scene inpainting with masked large reconstruction model. NeauIPS, 2025.

Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. pixelnerf: Neural radiance fields from
one or few images, 2021. URL https://arxiv.org/abs/2012.02190.

11

https://api.semanticscholar.org/CorpusID:2036193
https://arxiv.org/abs/2311.04400
https://openreview.net/forum?id=QQBPWtvtcn
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://arxiv.org/abs/2311.06214
https://arxiv.org/abs/2003.08934
https://arxiv.org/abs/2508.10104
https://arxiv.org/abs/2508.10104
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:13756489
https://arxiv.org/abs/2012.02190

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin, and
Saining Xie. Representation alignment for generation: Training diffusion transformers is easier
than you think. In International Conference on Learning Representations, 2025.

Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional networks.
ArXiv, abs/1311.2901, 2013. URL https://api.semanticscholar.org/CorpusID:
3960646.

Kai Zhang, Sai Bi, Hao Tan, Yuanbo Xiangli, Nanxuan Zhao, Kalyan Sunkavalli, and Zexiang Xu.
Gs-lrm: Large reconstruction model for 3d gaussian splatting, 2024. URL https://arxiv.
org/abs/2404.19702.

Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo magnification:
Learning view synthesis using multiplane images. In SIGGRAPH, 2018.

A USE OF LARGE LANGUAGE MODELS (LLMS) STATEMENT
During the preparation of this manuscript, we utilized Large Language Models (LLMs), as a writing
assistance tool. The use of LLMs was limited to improving the grammar, clarity, and readability
of the text. This includes tasks such as rephrasing sentences for better flow, correcting spelling
and grammatical errors, and ensuring stylistic consistency. The core scientific ideas, experimental
design, results, and conclusions presented in this paper are entirely our own. LLMs were not used to
generate any of the primary scientific content or interpre- tations. The final version of the manuscript
was thoroughly reviewed and edited by all authors, who take full responsibility for its content and
originality.

B RELATED WORKS

Generalizable Novel View Synthesis. The ability to synthesize novel views from a sparse set of
images is a long-standing goal in computer vision. Pioneering approaches such as image-based
rendering (IBR) blend reference images based on proxy geometries (Debevec et al., 1996; Gortler
et al., 1996). Early deep learning based methods predict blending weights or depth maps (Hedman
et al., 2018; Choi et al., 2019). Generalizable neural radiance fields models like PixelNeRF (Yu
et al., 2021) and MVSNeRF (Chen et al., 2024) pioneered the use of 3D-specific inductive biases.

Transformer-based Large Reconstruction Models. Recently, the field has gravitated towards
leveraging the scalability and power of the Transformer architecture (Vaswani et al., 2017) to create
Large Reconstruction Models (LRMs)(Hong et al., 2024; Wei et al., 2024; Li et al., 2023; Gao et al.,
2024; You et al., 2025). These models are trained on vast datasets to learn generic 3D priors. For
instance, Triplane-LRM(Li et al., 2023) and GS-LRM (Zhang et al., 2024) learn to map sparse input
images to explicit 3D representations like triplane NeRFs or 3D Gaussian Splatting primitives.

View Synthesis without Explicit 3D Representations. A compelling line of research explores the
possibility of performing novel view synthesis in a purely “geometry-free” manner. Early attempts
such as Scene Representation Transformers (SRT) (Sajjadi et al., 2022), introduced the idea of using
a Transformer to learn a latent scene representation. Large View Synthesis Model (LVSM) (Jin et al.,
2025) employs a single, monolithic Transformer to process all input and target tokens.

C TRAINING AND IMPLEMENTATION DETAILS

Training Setup. We train Efficient-LVSM with a constant learning rate schedule with a warmup of
2500 iterations. Following LVSM (Jin et al., 2025), we use AdamW optimizer and the β1 and β2 are
0.9 and 0.95 respectively. We also employ a weight decay of 0.5 on all parameters of the LayerNorm
layers. Unless noted, our models have 12 encoder layers and 12 decoder layers, which is the same
as LVSM.

Dataset-Specific Schedules. For object-level dataset, we use 4 input views and 8 target views with
64 A100 80G GPU. We first train with the resolution of 256 for 3 days. Then we finetune the model
with the resolution of 512 for 2 days with a learning rate of 4e − 5. For the scene-level dataset, we
train with 2 input views and 3 target views. We first train with the resolution of 256 with 2 days and
then finetune it with the resolution of 512 for 1 day.

12

https://api.semanticscholar.org/CorpusID:3960646
https://api.semanticscholar.org/CorpusID:3960646
https://arxiv.org/abs/2404.19702
https://arxiv.org/abs/2404.19702

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

REPA Distillation Details. We use the DINOv3-ViT-B/16 model (Siméoni et al., 2025) as the
pre-trained teacher. We use the output features from the 8th transformer layer of DINOv3 as the
distillation target. These teacher features are aligned with the output of a specific layer in our
student model, which varies by its size: for our main 12+12 layer models, we align with the 3rd
layer’s output, while for the smaller 6+6 layer models used in ablations, we align with the 2nd
layer. The alignment is performed via a 3-layer MLP projector and optimized using the Smooth L1
loss (Girshick, 2015).

13

	Introduction
	Method
	Preliminary
	Analysis of LVSM's Full Self-Attention Paradigm
	Dual-Stream Paradigm
	Intra-View Attention of Target Tokens in Decoder
	Co-Refinement of Encoder-Decoder
	Distillation with REPA
	KV-cache & Incremental Inference

	Experiments
	Datasets
	Implementaion Details
	Comparison with Start-of-the-Art Models
	Efficiency Analysis
	Ablation Studies
	Zero-Shot Generalization to the Number of Input Views.

	Visualization
	Conclusion
	 USE OF LARGE LANGUAGE MODELS (LLMS) STATEMENT
	Related Works
	Training and Implementation Details

