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ABSTRACT

Feedforward models for novel view synthesis (NVS) have recently advanced by
transformer-based methods like LVSM, using attention among all input and tar-
get views. In this work, we argue that its full self-attention design is suboptimal,
suffering from quadratic complexity with respect to the number of input views
and rigid parameter sharing among heterogeneous tokens. We propose Efficient-
LVSM, a dual-stream architecture that avoids these issues with a decoupled co-
refinement mechanism. It applies intra-view self-attention for input views and
self-then-cross attention for target views, eliminating unnecessary computation.
Efficient-LVSM achieves 30.6 dB PSNR on RealEstate10K with 2 input views,
surpassing LVSM by 0.9 dB, with 2× faster training convergence and 4.4× faster
inference speed. Efficient-LVSM achieves state-of-the-art performance on multi-
ple benchmarks, exhibits strong zero-shot generalization to unseen view counts,
and enables incremental inference with KV-cache, thanks to its decoupled designs.

1 INTRODUCTION

Reconstructing 3D scenes from a collection of 2D images remains a cornerstone challenge in com-
puter vision. The field has witnessed a remarkable evolution, moving from classical photogramme-
try systems to per-scene optimized neural representations like NeRF (Mildenhall et al., 2020) and
3DGS (Kerbl et al., 2023), which achieve high-quality reconstruction, but require dense inputs and
costly optimization for each new scene. A significant advance came from Large Reconstruction
Models (LRMs) (Hong et al., 2024; Wei et al., 2024; Zhang et al., 2024), which learn generalizable
3D priors from vast datasets. A recent paradigm shift, pioneered by models like LVSM (Jin et al.,
2025), has further advanced the field by minimizing hand-crafted inductive biases, where it directly
synthesizes novel views from posed images. It eliminates the need for predefined 3D structures or
rendering equations and achieves surprisingly good rendering quality with flexibility.

Despite the success, its monolithic self-attention mechanism, where all input and target tokens are
concatenated into a single sequence, leads to two primary drawbacks: (1) Low efficiency: full self-
attention leads to quadratic complexity with regard to the number of input views. Furthermore, when
generating multiple target views with the same input views, input representation can not be re-used.
(2) Limited performance: full self-attention enforces parameter sharing for heterogeneous tokens
- content-rich input views and pose-only target queries. It hinders the model’s ability to to learn
specialized representations for their distinct tasks, i.e., understanding the semantics & 3D structure
of the scene for input tokens and rendering the novel view for target tokens.

In this work, we systematically analyze these trade-offs and derive Efficient-LVSM, a Transformer-
based architecture designed to resolve these limitations. The key insight is to decouple the process
of input view encoding from target view generation. To achieve this, Efficient-LVSM is composed
of two specialized pathways: an Input Encoder that independently processes input views, and a
Target Decoder that synthesizes novel views by querying the encoded input features at each layer.
This dual-stream architecture endows our model with four key properties:

• Specialized Attention Pathways. Our architecture utilizes distinct modules for input and target
tokens. In the input encoder, only input view is processed. In the target decoder, target tokens act
as queries and input tokens serve as keys and values in cross-attention, avoiding the use of shared
parameters for heterogeneous information.
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Attribute
LVSM

Encoder-Decoder
LVSM

Decoder-Only
E�cient-LVSM

(Ours)

Information Integrity 7 3 3
Specialization Pathways 3 7 3

Rendering Quality 7 3 33
E�ciency (Speed/Memory) 3 7 33

Incremental Inference 7 7 3

1

PSNR SSIM Inference Time (ms)

28.58

29.67

30.61

0.893

0.906

0.915
70.88

109.4

24.78

LVSM Encoder-Decoder
LVSM Decoder-Only
Efficient LVSM

Figure 1: Latent Novel View Synthesis Paradigms Comparison. The proposed decoupled archi-
tecture disentangles the input and target streams. It maintains the integrity and specialization with
high efficiency, obtaining better rendering quality and faster inference speed.

• Robustness to Variable View Counts. The input self-attention processes each view separately,
making the transformation of one view independent of others. This per-view processing strategy
allows the model to generalize better than LVSM to a variable number of input views at test time.

• Computational and Memory Efficiency. The input encoder processes each input view sepa-
rately and the target decoder adopts cross-attention, both reducing the computational complexity
with respect to the number of input views from quadratic O(N2

in) to linear O(Nin).
• Incremental Inference via KV-Cache. The decoupled structure enables KV-cache of input view

features. When a new input view is provided, only that view needs to be processed. When a new
target view is required, the KV-cache could be directly re-used. In summary, the cost of adding
new input views and target views is nearly constant and thus enables incremental inference.

We conduct comprehensive evaluations for Efficient-LVSM. It sets a new state-of-the-art, outper-
forming LVSM by 0.9dB PSNR and GS-LRM by 2.5dB PSNR on the RealEstate10K benchmark
with 50% training time and achieves 2−4 times speed acceleration in terms of both training iteration
and inference. It exhibits strong zero-shot generalization to unseen numbers of input views.

2 METHOD

In this section, we present a step-by-step analysis that derives the design of Efficient-LVSM.

2.1 PRELIMINARY

Task Definition: Given N input images with known camera poses and M target view camera poses,
novel view synthesis (NVS) aims to render M corresponding target images. Specifically, the input
is {(Ii,Ei,Ki)|i = 1, 2, ..., N} and {(Ei,Ki)|i = 1, 2, ...,M}, where I ∈ RH×W×3 is the input
RGB image, H and W are the height and width, E,K ∈ R4×4 are camera extrinsic and intrinsic.
The output is rendered target images, denoted as {Îi|i = 1, 2, ...,M, Î ∈ RH×W×3}
Feedforward NVS Framework: we adopt LVSM (Jin et al., 2025) end-to-end paradigm. For
the input {(Ii,Ei,Ki)}Ni=1 and {(Ei,Ki)}Mi=1, all camera poses are encoded using Plücker ray
embedding (Plucker, 1865) while input images are patchified as in ViT (Dosovitskiy et al., 2020).
We obtain the input tokens {Si}Ni=1 by concatenating its RGB patches and Plücker ray patches in
the hidden dimension and passing through an MLP. We obtain the target tokens {Ti}Mi=1 by feeding
its Plücker ray patches into another MLP.

Next, input and target tokens pass through a set of transformer blocks to extract features, which
is the key component of the framework: {Ri}Mi=1 = Φ({Si}Ni=1, {Ti}Mi=1) where Φ represents the
transformer blocks and {Ri}Mi=1 is the final features of target views.

The output layer transforms the final features of target views {Ri}Mi=1 into RGB value by a linear
layer followed by a sigmoid function. These RGB patches are then unpatchified to target images:

Îti = unpatchify(Sigmoid(Linearrender(Ri)) ∈ RH×W×3, (1)
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Figure 2: Efficient-LVSM Model Structure. Efficient-LVSM patchifies posed input images and
target Plücker into tokens. Tokens of each input view separately pass through an encoder to extract
contextual information. Target tokens cross-attend to input tokens and render new views.

2.2 ANALYSIS OF LVSM’S FULL SELF-ATTENTION PARADIGM

LVSM deocder-only model employs full self-attention on all input and target tokens, which intro-
duces the following two limitations:

Entangled Representation. From the content perspective, input tokens contain both semantic and
geometric information, while target tokens only have geometric information. From the system per-
spective, they bear distinct tasks: input tokens are to understand the semantics & 3D structure of
the scene and target tokens are to render the novel view. However, shared self-attention parameters
do not distinguish the difference, hampering the generalization ability, as evidenced experiments in
Table 2 and visualizations in Fig. 10.

Computation and Memory Costs. Consider a sample (Si, Ti) with the shapes of Npn × d and
Mpn × d, where N and M are the numbers of input and target views, and pn = HW/p2 is the
number of patches. LVSM decoder-only model constructs M separate sequences for M target views,
where each sequence is a concatenation of the entire set of input tokens and the tokens of a single
target view. These sequences are processed by full self-attention:

V l
i = concat(Sl

1, S
l
2, ..., S

l
N , T l

i ); V l
i = V l−1

i + Self-Attnl
full(V

l−1
i ) (2)

The shape of Vi is M × (Npn + pn)× d. LVSM repeats the computation of one target view for M
times. Thus, the temporal complexity of LVSM decoder-only model is M ·O(N2p2n) = O(N2M),
as shown in Fig. 3 (a) and Table 1. The quadratic complexity with regard to the number of input
views hampers the efficiency and the repetition of tokens introduces severe computational cost.

LVSM encoder-decoder structure avoids the repetition issue by using an encoder to compress all
input views into one latent vector first. However, this design introduces loss of information, signif-
icantly limiting the reconstruction quality, which is acknowledged in LVSM paper Jin et al. (2025).

Structure Overall Complexity Component Complexity

LVSM
Encoder-Decoder O(N2 +M)

Encoder O(N2)
Decoder O(M)

LVSM
Decoder-Only O(M(N + 1)2) Decoder O(M(N + 1)2)

Efficient-LVSM
(Ours) O(NM +N)

Encoder O(N)
Decoder O(NM)

Table 1: Comparison of Model
Structure Complexity. The pro-
posed Efficient-LVSM obtains lower
complexity than LVSM and thus
achieves significant speed up, as ev-
idenced in Sec. 3.4.

2.3 DUAL-STREAM PARADIGM

Based on the observation above, we propose a dual-stream structure, where distinct modules are
applied on input and target tokens to decouple the information flow, as in Fig. 2.

Input Encoder: To maintain the independency of different input views and improve efficiency, we
limit the scope of self-attention to patches within the same input view. Each input view is processed
separately, which enables efficient inference when a new input view is provided (incremental in-
ference). Instead of constructing a single, prohibitively long attention sequence containing tokens
from all N input views, we propose to process N shorter sequences. Specifically, let Si represent the
tokens of the ith input view. They are updated by an intra-view self-attention block at layer l:

Sl
i = Sl−1

i + Self-Attnl
input(S

l−1
i ); Sl

i = Sl
i + FFNl

input(S
l
i) (3)
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Figure 3: Comparison of Attention Paradigms. The shaded areas indicate the token pairs for
which attention scores are computed. EfficientLVSM adopts intra-view self-attention for inputs and
allows the target decoder to cross-attend to the full set of uncompressed input features.

Figure 4: Vanilla Encoder-Decoder vs. Dual-Stream Co-refinement. (a) Hidden features in
middle layers in vanilla encoder-decoder are wasted while the dual-stream co-refinement structure
utilizes these features to extract more information. (b) Feature maps indicate that co-refinement
structure catches more details of the target view.

Target Decoder: To allow efficient KV-cache for features of input views, target decoder employs
cross-attention, letting output tokens T l

i attend to input tokens SL
i from the last layer of encoder:

T l
i = T l

i + Cross-Attnl
target(T

l
i , S

L
1 , S

L
2 , ..., S

L
N ); T l

i = T l
i + FFNl

input(T
l
i ) (4)

This design decouples the parameters for input and output tokens and allows rendering multiple
target views with the same input KV-cache. Assuming the hidden dimension and the number of
patches per image are constants, the temporal complexity of the Target Decoder are O(NM), while
complexity of LVSM decoder-only is O(M(N + 1)2), as in Table 1.

2.4 INTRA-VIEW ATTENTION OF TARGET TOKENS IN DECODER

The aforementioned cross-attention only decoder design introduces a drawback: each target token
has to store the information of the whole scene by their own since there is no scene-level interac-
tion in input encoder, limiting the capacity. To this end, we propose to add intra-view self-attention
in target decoder alternatively with the original cross attention :

T l
i = T l−1

i + Self-Attnl
target(T

l−1
i )

T l
i = T l

i + Cross-Attnl
target(T

l
i , S

L
1 , S

L
2 , ..., S

L
N )

T l
i = T l

i + FFNl
input(T

l
i )

(5)

In this way, the intra-view self-attention in decoder allows to integrate scene-level information from
other target tokens while still maintaining KV-cache ability. Experiments Table 5 (a) demonstrates
6+6 layers self-then-cross attention performs better than 12 layers cross-attention.

2.5 CO-REFINEMENT OF ENCODER-DECODER

One widely observed phenomenon for deep neural network is that different layers of features
represent different abstract level of informantion (Zeiler & Fergus, 2013): early layers captur-
ing fine-grained details such as textures, and later layers encoding high-level semantics. In vanilla
encoder-decoder, only last layer features are used, as in Fig. 4 (a), which limits its capacity.

To this end, we propose a dual-stream co-refinement structure, illustrated in Fig. 4 (b), where each
layer of the encoder provides information to its corresponding layer in the decoder. At layer l, input
tokens Sl are first updated by self-attention, and then the target decoder queries these updated tokens

4
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Figure 5: Applying REPA into Efficient-LVSM. (a) Pretrained vision encoders and MLP projectors
are discarded in inference. (b) Feature maps indicate that REPA helps the model extract semantics.

to refine its own representation T l:

T l
i = T l−1

i + Self-Attnl
target(T

l−1
i )

T l
i = T l

i + Cross-Attnl
target(T

l
i , S

l
1, S

l
2, ..., S

l
N )

T l
i = T l

i + FFNl
input(T

l
i )

(6)

By querying the encoder’s representations in the middle layers, the decoder can synthesize its own
features using both the fine-grained details from early layers and the rich semantic context from later
ones. Fig. 4 (b) demonstrates that the co-refinement model generate more detailed and high-quality
features compared to vanilla encoder-decoder structure.

2.6 DISTILLATION WITH REPA

With the decoupled attention for different views, a natural thought is to utilize those powerful pre-
trained vision encoder. To utilize visual features without sacrificing inference speed, we employ
REPA (Yu et al., 2025) to distill visual features from DINOv3 (Siméoni et al., 2025). Formally,
consider a clean image I and hϕ(X

k) is the projection of hidden features of layer k, where hϕ is
a trainable projector and Xk represents the input tokens or target tokens of layer k: Xk = Sk or
Xk = T k. Let f represent the pretrained encoder such as DINOv3. The goal is to align the projec-
tion of layer output hϕ(X

k) with encoded images f(I) by maximizing the patch-wise similarities:

LREPA =
1

N

N∑
i=1

sim(f(I), hϕ(X
k)) (7)

We find that improvement with REPA is conditional. Experiment in Table 5 show that LVSM ben-
efits much less compared to Efficient LVSM’s dual-stream co-refinement design structure, possibly
due to its full self-attention design entangles feature maps of different views.

2.7 KV-CACHE & INCREMENTAL INFERENCE

A key advantage of the decoupled dual stream design is its natural compatibility with KV caching
during inference as illustrated in Fig. 6. The key and values of all input views, {Ŝi}Ni=1, can be
computed once and stored. When a new target view is required, the decoder could directly utilize
the stored cache {Ŝi}Ni=1 for rendering. When a new input view IN+1 is introduced, only this new
view needs to be processed and appended into the cache. As a result, it enables efficient incremental
inference, which could be used in interactive application scenarios.

3 EXPERIMENTS

3.1 DATASETS

Scene-level Datasets. We use the widely used RealEstate10K dataset (Zhou et al., 2018). It contains
80K video clips curated from 10K YouTube videos, including both indoor and outdoor scenes. We
follow the training/testing split applied in LVSM (Jin et al., 2025).

5
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Figure 6: Efficient Incremental Inference with KV-Cache. Efficient LVSM saves computation
when provided with novel inputs or targets by caching the key and value for previous input views.

Table 2: Scene-level View Synthesis
Quality. We test on the same valida-
tion set proposed in pixelSplat.

RealEstate10k (Zhou et al., 2018)
PSNR ↑ SSIM ↑ LPIPS ↓

pixelNeRF 20.43 0.589 0.550
GPNR 24.11 0.793 0.255

Du et al. 24.78 0.820 0.213
pixelSplat 26.09 0.863 0.136
MVSplat 26.39 0.869 0.128
GS-LRM 28.10 0.892 0.114

LVSM Enc-Dec 28.58 0.893 0.114
LVSM Dec-Only 29.67 0.906 0.098

Ours 30.61 0.915 0.087

Table 3: Object-level View Synthesis Quality. We test at
512 and 256 resolution on both input and rendering. ”Enc”
means encoder and ”Dec” means decoder.

ABO (Collins et al., 2022) GSO (Downs et al., 2022)
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Triplane-LRM (Res-512) 27.50 0.896 0.093 26.54 0.893 0.064
GS-LRM (Res-512) 29.09 0.925 0.085 30.52 0.952 0.050

LVSM Enc-Dec (Res-512) 29.81 0.913 0.065 29.32 0.933 0.052
LVSM Dec-Only (Res-512) 32.10 0.938 0.045 32.36 0.962 0.028

Ours (Res-512) 32.65 0.951 0.042 32.92 0.973 0.021

LGM (Res-256) 20.79 0.813 0.158 21.44 0.832 0.122
GS-LRM (Res-256) 28.98 0.926 0.074 29.59 0.944 0.051

LVSM Enc-Dec (Res-256) 30.35 0.923 0.052 29.19 0.932 0.046
LVSM Dec-Only (Res-256) 32.47 0.944 0.037 31.71 0.957 0.027

Ours (Res-256) 33.13 0.960 0.035 32.73 0.969 0.022

Object-level Dataset. We use the Objaverse dataset (Deitke et al., 2023) to train our model. Follow-
ing the rendering settings in GS-LRM (Zhang et al., 2024), we render 730K objects, and each object
contains 32 random views. We test our object-level model on Google Scanned Objects (Downs
et al., 2022) (GSO) and Amazon Berkeley Objects (Collins et al., 2022) (ABO), containing 1099
and 1000 objects respectively. Following Instant-3D (Li et al., 2023) and LVSM (Jin et al., 2025),
we render 4 structured input views and 10 random target views for testing.

3.2 IMPLEMENTAION DETAILS

Model Details. Following LVSM (Jin et al., 2025), we use a patch size of 8 × 8 for the image
tokenizer with 24 transformer layers (12-layer encoder and 12-layer decoder) and the dimension of
hidden feature 1024. Following REPA (Yu et al., 2025), we select a 3-layer MLP as the alignment
projection layer.

Protocols. Following the settings in LVSM, we select 4 input views and 8 target views in the object-
level dataset. We select 2 input views and 3 target views in scene-level dataset.

3.3 COMPARISON WITH START-OF-THE-ART MODELS

Scene-Level Comparison. We compare on scene-level inputs with pixelNeRF (Yu et al., 2021),
GPNR (Suhail et al., 2022), Du et al. (Du et al., 2023), pixelSplat (Charatan et al., 2024), MVS-
plat (Chen et al., 2024), GS-LRM (Zhang et al., 2024), LVSM encoder-decoderand LVSM decoder-
only (Jin et al., 2025). As in Table 2, our model establishes a new state-of-the-art on the
RealEstate10K benchmark, outperforming the previous leading method, LVSM decoder-only, by
a significant margin of 0.9 dB PSNR. This corresponds to an 18.7% reduction in Mean Squared
Error (MSE), indicating a substantial improvement in reconstruction fidelity. This quantitative leap
is supported by our qualitative results in Figure 7, where our model produces noticeably sharper ren-
derings and demonstrates superior geometric accuracy, particularly when synthesizing near-field ob-
jects where LVSM often introduces artifacts. Notably, this state-of-the-art performance is achieved
with remarkable efficiency. Our model was trained for just 3 days on 64 A100 GPUs, which is half
the training time required by LVSM. In essence, Efficient-LVSM not only surpasses the previous
state-of-the-art in quality but does so while requiring only 50% of the training budget.
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Figure 7: NVS Visual Comparison. We compare with LVSM (Jin et al., 2025) in
RealEstate10K (Zhou et al., 2018) and Amazon Berkeley Objects (Collins et al., 2022). Images
rendered by our model have less blur details.
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Figure 8: Inference Speed Comparison. We compare the inference time (ms) against (a) the num-
ber of target views and (b) the number of input views. Our model achieves consistently low latency.
The performance of the LVSM baselines, particularly LVSM Decoder-Only, degrades severely as
view counts increase. This highlights our model’s significant computational efficiency, achieving up
to a 14.9x speedup over LVSM Decoder-Only.

Object-Level Comparison. Similarly, Efficient-LVSM achieves state-of-the-art performance.

3.4 EFFICIENCY ANALYSIS

We evaluate the efficiency from three perspectives: vanilla inference latency, incremental inference
latency, and training convergence speed. For fair comparison, we keep the number of layers (12+12)
and hidden dimension (1024) the same with LVSM. For the convergence analysis, smaller variants
are used for fast verification to save computational resource.

Vanilla Inference Speed. We analyze the inference cost by measuring latency, memory peak, and
total GFLOPS as a function of both input and target view counts. As shown in Fig. 8, our model’s

7
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(a) Incremental Inference Experiments. We compare the inference
latency and memory consumption when the input view is fed one by
one. We observe that Efficient LVSM achieves near constant latency
and memory consumption due to its KV-cache ability.
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Figure 9: Efficiency Comparison.

Table 5: Ablation Study.
(a) Architectural Components Ablation.

Arch. PSNR ↑ SSIM ↑ LPIPS ↓
Cross-Attention Only 24.18 0.7908 0.1982
Self-Cross Attention 24.97 0.8201 0.1628
Co-Refinement 26.25 0.8462 0.1490

(b) Effect of REPA
Arch./Variant PSNR ↑ SSIM ↑ LPIPS ↓
LVSM Dec-Only 25.52 0.8385 0.1541
LVSM Dec-Only w REPA 25.68 0.8410 0.1515

Ours w/o REPA 26.02 0.8483 0.1481
Ours w REPA 26.81 0.8628 0.1296

(c) Effect of Model Sizes
Models Parameters PSNR ↑ SSIM ↑ LPIPS ↓
Enc(12) + Dec(12) 199M 28.32 0.8892 0.1106
Enc(6) + Dec(6) 101M 27.77 0.8871 0.1149
Enc(3) + Dec(3) 53M 26.43 0.8609 0.1377

(d) Size and Speed Comparison
Model Layers Parameters Latency (ms) ↓ GFLOPS ↓ PSNR ↑
GS-LRM 24 307M 88.24 5047 28.10
LVSM Enc-Dec 6+18 177M 70.88 6042 28.58
LVSM Dec-Only 24 177M 109.37 8523 29.67
Ours (inference) 12+12 199M 24.78 1325 30.61

resource consumption exhibits a slow growth, maintaining high efficiency even with many views. In
contrast, while the LVSM Encoder-Decoder shows a moderate increase in cost, the LVSM Decoder-
Only variant suffers from a severe computational growth. This efficiency gap is substantial: with 16
input views, our model is 14.9x faster and consumes 50% less memory than LVSM Decoder-Only.

Incremental Inference. Fig. 9a indicate that the time and memory required for the incremental
coming input views is nearly constant for Efficient-LVSM. Conversely, both LVSM baselines exhibit
a clear growth in latency and memory consumption.

Training Convergence Speed. As in Fig. 9 (b), Efficient-LVSM demonstrates a steeper learning

Table 4: Ablation Study of REPA Distillation.

Category Configuration PSNR ↑ LPIPS ↓ SSIM ↑
Without REPA Distillation (Baseline) 26.02 0.1481 0.8483

Ablation on REPA Hyperparameters

Loss Function
Smooth L1 26.81 0.1349 0.8562
L2 26.39 0.1366 0.8571
Cosine 26.30 0.1374 0.8542

Distillation Target
Input Tokens Only 26.35 0.1367 0.8569
Target Tokens Only 26.27 0.1452 0.8536
Both Input & Target 26.60 0.1256 0.8642

DINOv3 Source Layer
Layer 8 26.60 0.1256 0.8642
Layer 10 26.28 0.1441 0.8540
Layer 12 26.11 0.1416 0.8503

curve. It successfully reaches
the final performance plateau of
the LVSM baseline while con-
suming only half the computa-
tional budget (GPU hours).

3.5 ABLATION STUDIES

All ablation experiments use
a smaller 6+6 encoder-decoder
configuration to save budget.

Co-refinement of Encoder-
Decoder Structure. As in
Table 5 (a), self-then-cross
attention yields 0.79 dB PSNR improvement compared to cross-attention only in decoder. Further,
adopting encoder-decoder co-refinement gives 1.28 dB PSNR gains.

Applicability of REPA Distillation. As in Table 5 (b), applying REPA to Efficient-LVSM brings a
substantial gain of 0.8 dB while applying to LSVM only brings 0.16 dB improvement. In Table 4,
we study the configuration of REPA. We find that Smooth L1 loss works the best, possibly due to its
absolute approximation to DINOv3 features instead of relative approximation as cosine similarity.
We confirm that distillation for both input and target are useful. DINOv3’s middle layer features
instead of the final layers are most helpful, aligning with findings in Siméoni et al. (2025).
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Influcne of Model Size. As in Table 5 (c), increasing model size consistently improves reconstruc-
tion quality, aligning with Jin et al. (2025), demonstrating the potential of feedforward models.

Size and Speed Comparison. As in Table 5 (d), Efficient LVSM achieves 4x faster inference

Figure 10: Zero-Shot Generalization to Input
View Count. We train with 4 input views and
test on varying number of views.

with 0.94 dB higher PSNR compared to state-of-
the-art LVSM decoder-only model.

3.6 ZERO-SHOT GENERALIZATION
TO THE NUMBER OF INPUT VIEWS.

As in Fig. 10, Efficient-LVSM and LVSM both
could benefit from more views even not trained
under such data, thanks to the set operator -
Transformer. Efficient LVSM constantly outper-
forms LVSM under all view settings while the gap
is gradually reduced, since the reconstruction be-
comes easier with more input views.
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Figure 11: PCA Visualization of Input and Target Views Features at Different Layers.

4 VISUALIZATION

In Fig. 11, we visualize the features of Efficient-LVSM trained on RealEstate10K. We could observe
that from the initial layer (Layer 1) to the middle layer (Layer 6), the features contain more and
more semantics. From the middle layer (Layer 6) to the last layer (Layer 12), the features becomes
similar to the final output - RGB images. The evolving process demonstrates the effectiveness of the
proposed co-refinement structure to extract features from all levels.

5 CONCLUSION

In this work, we present a systematic analysis for issues of existing Transformer based NVS feedfor-
ward model. Based on the analysis, we derive Efficient-LVSM, a decoupled dual-stream architec-
ture. Comprehensive experiments demonstrate that the proposed structure not only performs better
but also achieves significant speed up for training convergence and inference latency.
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impact by improving. The dataset used in this study is publicly available and have been widely
adopted by the community for academic research. All data was handled in accordance with their
specified licenses and terms of use. We did not use any personally identifiable or sensitive private
information. We have focused our evaluation on standard academic benchmarks. We encourage
future research building upon our work to consider the specific ethical implications of their target
applications.
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A USE OF LARGE LANGUAGE MODELS (LLMS) STATEMENT
During the preparation of this manuscript, we utilized Large Language Models (LLMs), as a writing
assistance tool. The use of LLMs was limited to improving the grammar, clarity, and readability
of the text. This includes tasks such as rephrasing sentences for better flow, correcting spelling
and grammatical errors, and ensuring stylistic consistency. The core scientific ideas, experimental
design, results, and conclusions presented in this paper are entirely our own. LLMs were not used to
generate any of the primary scientific content or interpre- tations. The final version of the manuscript
was thoroughly reviewed and edited by all authors, who take full responsibility for its content and
originality.

B RELATED WORKS

Generalizable Novel View Synthesis. The ability to synthesize novel views from a sparse set of
images is a long-standing goal in computer vision. Pioneering approaches such as image-based
rendering (IBR) blend reference images based on proxy geometries (Debevec et al., 1996; Gortler
et al., 1996). Early deep learning based methods predict blending weights or depth maps (Hedman
et al., 2018; Choi et al., 2019). Generalizable neural radiance fields models like PixelNeRF (Yu
et al., 2021) and MVSNeRF (Chen et al., 2024) pioneered the use of 3D-specific inductive biases.

Transformer-based Large Reconstruction Models. Recently, the field has gravitated towards
leveraging the scalability and power of the Transformer architecture (Vaswani et al., 2017) to create
Large Reconstruction Models (LRMs)(Hong et al., 2024; Wei et al., 2024; Li et al., 2023; Gao et al.,
2024; You et al., 2025). These models are trained on vast datasets to learn generic 3D priors. For
instance, Triplane-LRM(Li et al., 2023) and GS-LRM (Zhang et al., 2024) learn to map sparse input
images to explicit 3D representations like triplane NeRFs or 3D Gaussian Splatting primitives.

View Synthesis without Explicit 3D Representations. A compelling line of research explores the
possibility of performing novel view synthesis in a purely “geometry-free” manner. Early attempts
such as Scene Representation Transformers (SRT) (Sajjadi et al., 2022), introduced the idea of using
a Transformer to learn a latent scene representation. Large View Synthesis Model (LVSM) (Jin et al.,
2025) employs a single, monolithic Transformer to process all input and target tokens.

C TRAINING AND IMPLEMENTATION DETAILS

Training Setup. We train Efficient-LVSM with a constant learning rate schedule with a warmup of
2500 iterations. Following LVSM (Jin et al., 2025), we use AdamW optimizer and the β1 and β2 are
0.9 and 0.95 respectively. We also employ a weight decay of 0.5 on all parameters of the LayerNorm
layers. Unless noted, our models have 12 encoder layers and 12 decoder layers, which is the same
as LVSM.

Dataset-Specific Schedules. For object-level dataset, we use 4 input views and 8 target views with
64 A100 80G GPU. We first train with the resolution of 256 for 3 days. Then we finetune the model
with the resolution of 512 for 2 days with a learning rate of 4e − 5. For the scene-level dataset, we
train with 2 input views and 3 target views. We first train with the resolution of 256 with 2 days and
then finetune it with the resolution of 512 for 1 day.
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REPA Distillation Details. We use the DINOv3-ViT-B/16 model (Siméoni et al., 2025) as the
pre-trained teacher. We use the output features from the 8th transformer layer of DINOv3 as the
distillation target. These teacher features are aligned with the output of a specific layer in our
student model, which varies by its size: for our main 12+12 layer models, we align with the 3rd
layer’s output, while for the smaller 6+6 layer models used in ablations, we align with the 2nd
layer. The alignment is performed via a 3-layer MLP projector and optimized using the Smooth L1
loss (Girshick, 2015).
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